
CertainID
Seyit Camtepe, Seung Jang, Garrison Gao

August 2019

Kollakorn Corporation Ltd

David Matthews, Chief Executive Officer

Commercial-in-confidence

Citation

S. Camtepe, S. Jang, G. Gao (2019) CertainID Project. CSIRO, Australia.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2019. To the extent permitted
by law, all rights are reserved, and no part of this publication covered by copyright may be
reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements
based on scientific research. The reader is advised and needs to be aware that such information
may be incomplete or unable to be used in any specific situation. No reliance or actions must
therefore be made on that information without seeking prior expert professional, scientific and
technical advice. To the extent permitted by law, CSIRO (including its employees and consultants)
excludes all liability to any person for any consequences, including but not limited to all losses,
damages, costs, expenses and any other compensation, arising directly or indirectly from using this
publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having
difficulties with accessing this document please contact csiroenquiries@csiro.au.

CertainID | i

Foreword

CertainID is a CSIRO Kick-Start project with Kollakorn. CSIRO Kick-Start is a new initiative for
innovative Australian start-ups and small SMEs, providing funding support and access to CSIRO’s
research expertise and capabilities to help grow and develop their business.

Kollakorn and CSIRO Data61 collaborate to develop an innovative method for secure use of
biometric features for signing electronic transactions. CertainID does not store any biometric
information associated with individuals, and it ensures that individuals’ mass biometric data is not
lost or compromised if the device storing CertainID data is lost or compromised, e.g., no sensitive
information associated with individuals can be hacked off the device.

ii | CertainID

Contents

Foreword .. i

Acknowledgments .. v

Executive summary .. vi

1 Introduction .. 1

2 CertainID Key Management and Signature Scheme ... 3

2.1 Keys and Cryptographic Primitives .. 3

2.2 Biometric Sensor ... 5

2.3 CertainID Cryptosystem .. 8

2.4 CertainID Security Assessment .. 10

3 CertainID Solution .. 12

3.1 System Design ... 12

3.2 Implementation ... 21

3.3 Installation ... 24

3.4 Running ... 34

3.5 Demonstration .. 37

4 Conclusion .. 40

4.1 Potential Applications ... 40

4.2 Future Work .. 40

Abbreviations and Glossary .. 41

CertainID | iii

Figures
Figure 1 CertainID Concept. A sensor challenged with a seed reads a biometric feature (e.g., iris
scan) and produces a biometric code. Different seeds result in different biometric codes.
Biometric code is used to encrypt private keys. Every time a private key is required for
signing/decrypting a transaction, the sensor should be invoked with the same seed to extract
the matching biometric code and release the private key temporarily. .. 2

Figure 2 CertainID Keys and Primitives. .. 4

Figure 3 Iris binary code extraction. ... 6

Figure 4 Biometric key binding based on iris. ECC is the abbreviation of error correction code. .. 7

Figure 5 IRIS based public key infrastructure. (b) and (c) are based on white paper and patents
of Kollakorn. ... 8

Figure 6 Biometric code based crypto-system flow. Only the shaded information is required to
be stored. E()/D() stands for encryption/decryption function, H() stands for hash function. 9

Figure 7 A use case diagram for the CertainID demo system. .. 13

Figure 8 A sequence diagram for the CertainID demo system. .. 14

Figure 9 A high-level class diagram for the CertainID demo system. ... 15

Figure 10 A class diagram for 'algorithms' package. ... 16

Figure 11 A class diagram for ‘ui’ package. ... 18

Figure 12 Database scheme for the CertainID. ... 20

Figure 13 APIs for InfinityOptics. .. 23

Figure 14 A usage example of the APIs in Python. ... 24

Figure 15 MySQL Community Server download page. ... 25

Figure 16 MySQL setup - Choosing a Setup Type. .. 26

Figure 17 MySQL setup - Select Product and Features. .. 26

Figure 18 MySQL setup - Accounts and Roles. ... 27

Figure 19 MySQL setup - Apply Configuration. ... 27

Figure 20 MySQL Workbench – Welcome screen. ... 28

Figure 21 Create a Schema. .. 28

Figure 22 Edit Privileges .. 29

Figure 23 Select schema ... 29

Figure 24 Append rights to the schema .. 30

Figure 25 Create tables. .. 31

Figure 26 Setup CertainID - MySQL Connection Information. .. 31

Figure 27 Setup CertainID - Destination Location. ... 32

iv | CertainID

Figure 28 Setup CertainID - Create desktop shortcuts. .. 32

Figure 29 Setup CertainID - Review configurations. ... 33

Figure 30 Setup CertainID – Installing .. 33

Figure 31 Setup CertainID – Finished. ... 34

Figure 32 CertainID shortcuts. .. 34

Figure 33 IRIS Camera installed. ... 34

Figure 34 Main window of the Monitor. .. 35

Figure 35 Main window of the Server. ... 35

Figure 36 Main window of the Signer. .. 36

Figure 37 Main window of the Verifier. .. 37

Figure 38 Manage Applications Dialog. .. 37

Figure 39 Enrolment form. ... 38

Figure 40 Iris camera with a mirror to assist users. .. 38

Figure 41 Sign on a document. ... 39

Figure 42 Verify a signed document ... 39

Tables
Table 1 NIST Key Size Guideline. CertainID enforces security scale to be higher than 80-bit. 4

Table 2 False rejection rate (FRR) as a function of varying error correction capabilities (ECC code
configurations). .. 7

Table 3 Comparison between NoSQL and RDBMS. .. 20

Table 4 Comparison of crypto libraries. .. 22

Table 5 Comparison of development platforms. .. 22

CertainID | v

 Acknowledgments

Following people have contributed to the CertainID project so far:

• Data61: Seung Jang, Garrison Gao, Seyit Camtepe, Surya Nepal

• Kollakorn: David Matthews

• Infitecs: Gary Fitzgerald

• Infinity Optics: Raghavendra Prasad NL, Gilles Mathieu, Alfred Chan, Michael Gui

vi | CertainID

Executive summary

Biometrics (i.e., something you are) constitute an essential factor in multifactor authentications
(i.e., something you are, something you are given and something you know). The existing
biometric solutions store and communicate biometric templates, a digital representation of
unique biological features such as fingerprints, palm, palm veins, hand geometry, face, iris, retina,
DNA and odour, and behavioural characteristics such as typing, gaits and voice. The fundamental
problem with these biometric templates is that their compromise causes permanent harm. The
stolen biometric template can be used to claim the identity of the victim continually - a victim may
be able to change some biometric features through a series of major plastic surgery or organ
transplant, but DNA-based biological features cannot be changed as they are stored in each of 100
trillion cells of the human body. These challenges make biometrics-based security solutions (e.g.,
authentication, confidentiality and digital signature) risky for both users from whom these
features are extracted and organizations which extract, use and store these features.

The CertainID project fills a significant gap by providing a safe method for biometrics-based
security solutions. The project has started with the investigation of a white paper and two
Kollakorn patents: A Biometric Authentication System (WO 2013/134832 A1) and Biometric
Identification Method (WO 2010/132928 A1). The core idea of patents which is transferred to the
CertainID solution is to use biometric information to lock and unlock revokable security keys and
use these keys to secure transactions. Hence, CertainID eliminates the need for storage of any
biometric information.

CertainID uses biometric features through a one-way mapping to create a revokable master key
and uses the master key to encrypt a set of randomly generated private keys. Users present their
biometric features to unlock a private key for signing (or decrypting) a transaction, e.g., bank
transaction, an electronic form, email, course registration, project delivery, exam and attendance.
The user has the freedom to revoke and renew these public/private keys anytime they like. Even
when an adversary obtains these encrypted key pairs, they can obtain no information on users'
biometric features.

CertainID helps remove the security key management burden and associated risks both from
individuals and organizations. CertainID ensures that individuals' mass biometric data is not
lost/compromised, and no sensitive information associated with individuals can be hacked off the
device if the device storing CertainID data is lost or compromised.

CertainID | 1

1 Introduction

Biometrics (i.e., something you are) constitute an essential factor in authentication. There are
three factors:

1. something you are (biometrics),

2. something you are given (hardware or software tokens), and

3. something you know (secrets and passwords).

Multi-factor authentication schemes are built by the following combinations of these three
factors:

a) One-factor authentication, i.e., any one of the factors

b) Two-factor authentications, i.e., any two of the factors

c) Three-factor authentications, i.e., all three factors

Among these three factors, “something you are” (biometrics) are the most challenging but at the
same time the most usable one. Usability comes from the fact that a user presents themselves –
they do not need to remember a password or carry hardware around. The challenging aspect has
many contributors such as the difficulty of developing the technology (i.e., biometric sensor) to
extract biometric features in the most usable way and ensuring that these features won’t end-up
at malicious hands - this project focuses on the security of the biometrics.

The existing biometric solutions store and communicate biometric templates, a digital
representation of unique biological features such as fingerprints, palm, palm veins, hand
geometry, face, iris, retina, DNA and odour, and behavioural characteristics such as typing, gaits
and voice. The fundamental problem with these biometric templates is that their compromise
causes permanent harm. The stolen biometric template can be used by malicious people to claim
the identity of the victim continually - a victim may be able to change some biometric features
through a series of major plastic surgery or organ transplant, but DNA-based biological features
cannot be changed as they are stored in each of 100 trillion cells of the human body. These
challenges make biometrics-based security solutions (e.g., authentication, confidentiality and
digital signature) risky for both users from whom these features are extracted and for
organizations which extract and store these features, i.e., an organization losing control of
biometric information of its customers can face severe legal and reputational consequences.

The CertainID project aims to make it safer for users to supply their biometric information and for
organizations to build user-friendly solutions composed of strong biometrics-based security.
CertainID achieves this aim is by changing the way biometric features are used – information that
can be used to extract the exact biometric features should not be stored.

The CertainID project has started with the investigation of one Kollakorn white paper and two
Kollakorn patents: A Biometric Authentication System (WO 2013/134832 A1) and Biometric
Identification Method (WO 2010/132928 A1). The core idea of patents which is transferred to the
CertainID solution is to use biometric information to lock and unlock revokable security keys, store

2 | CertainID

only encrypted security keys and use these keys to secure (i.e., sign or encrypt) application
transactions, as illustrated in Figure 1. Hence, CertainID eliminates the need for storage of any
biometric information.

Figure 1 CertainID Concept. A sensor challenged with a seed reads a biometric feature (e.g., iris scan) and produces
a biometric code. Different seeds result in different biometric codes. Biometric code is used to encrypt private keys.
Every time a private key is required for signing/decrypting a transaction, the sensor should be invoked with the
same seed to extract the matching biometric code and release the private key temporarily.

CertainID uses biometric features through a one-way mapping to create a revokable master key
and uses the master key to encrypt a set of randomly generated private keys. Users present their
biometric features to unlock a private key for use in signing (or decrypting) a transaction, e.g.,
course registration, project delivery, exam and lab attendance in education domain. Verification of
signed transaction can be done by using the public key available to anybody. Similarly, a
transaction that should be viewable only by the user can be encrypted by anybody using the public
key of the user. User has the freedom to revoke and renew these public/private keys anytime they
like. Even when an adversary obtains these encrypted keys, they can obtain no information on
users' biometric features and the victim can easily reset the compromised keys.

CertainID helps remove the security key management burden and associated risks both from
individuals and organizations. Users can safely present their biometric information knowing that
they will not be stored on any devices. Organizations only needs to store encrypted security keys
which are not useable without the Biometric data and which can easily be revoked in the worst-
case scenario – this makes organizations’ job easier to comply with security and privacy
regulations. CertainID achieves so while ensuring that individuals' mass biometric data is not
lost/compromised, e.g., if the device storing CertainID data is lost or compromised, no sensitive
information associated with individuals can be hacked off the device.

CertainID | 3

2 CertainID Key Management and Signature
Scheme

2.1 Keys and Cryptographic Primitives

Secure and usable methods to identify Internet users have been a critical problem for Internet
applications. Password-based methods (i.e., something you know) have proven to be vulnerable as
people tend to pick easy to remember passwords, use the same password for many Internet
applications or share them with others. The similar problems exist for Internet applications and
protocols that depended on strong cryptographic methods. No matter how strong these
cryptographic methods are, they become vulnerable when their secrets are not protected well.

CertainID is a biometrics-based key management solution. However, combined with a biometric
sensor, it can be considered as a suite that solves identification, authentication and key
management problems.

• CertainID uses revokable biometric codes to protect (lock/unlock) arbitrary number and type
(symmetric or asymmetric of different sizes) of secrets as illustrated in Figure 1. The keys are
mainly used to ensure integrity, authenticity and confidentiality of transactions supplied by
client applications.

• CertainID can be used to authenticate a user if they can supply the matching biometric code to
unlock a set of secret belonging to the claimed ID.

• CertainID can be used to identify a user if the biometric code unlocks a set of secrets belonging
to a known ID.

CertainID expects to receive a minimum of 128-bit biometric code from the biometric sensor. It is
critical to have high-entropy biometric codes. This can be ensured by the sensor by using a privacy
amplification method such as hashing or encrypting using a salt value. Biometric code is used to
encrypt user’s secrets (e.g., private keys in Figure 1) with 128-bit Advanced Encryption Standard
(AES) algorithm.

Selection of key size is an important aspect of security. Any cryptographic scheme having less than
an 80-bit security rating is considered as weak. 80-bit security means that a computer needs to
search 280 different keys in a brute force key attack to break the code. State-of-the-art computing
systems can achieve a brute force key attack for the algorithms having less than 80-bit security.
AES-128 (AES with 128-bit key size) provides 128-bit security scale, which is assumed to be safe.
Additionally, it has been shown that brute-force key search on quantum computers cannot be
faster than 2n/2, which means that AES-256 (AES with 256-bit key size) provides 128-bit security
scale against quantum brute force key attack. Table 1 by NIST compares the security scale of the
symmetric and asymmetric key schemes.

4 | CertainID

Table 1 NIST Key Size Guideline. CertainID enforces security scale to be higher than 80-bit.

Security
Scale

Symmetric Key
Cryptography Key Sizes

RSA and Diffie-
Hellman Key Sizes

Elliptic Curve
Cryptography Key Sizes

80-bit 80-bit 1024-bit 160-bit
112-bit 112-bit 2048-bit 224-bit
128-bit 128-bit 3072-bit 256-bit
192-bit 192-bit 7680-bit 384-bit
256-bit 256-bit 15360-bit 521-bit

The secrets (e.g., private keys in Figure 1) managed and protected by CertainID is generated using
RSA-2048, which means 2,048 bits - 617 decimal digits. RSA-2048 may not be factorizable for many
years to come unless considerable advances are made in integer factorization, quantum
computing or computational power soon. It is possible to use 224-bit or larger elliptic curve
cryptosystem as most signature schemes support curves at these sizes.

Figure 2 CertainID Keys and Primitives.

CertainID uses SHA-256 to reduce an arbitrary size transaction into a 256-bit hash. Hash of the
message is encrypted by using 2048-bit private key and RSA-2048, following the PS256 (RSAASSA-
PSS) digital signature scheme. The encrypted hash forms the signature for the transaction. It is
infeasible to change this transaction as any change (e.g., a bit flip) will yield a different hash which
will not match the encrypted hash in the signature. Such a change requires an adversary to break
the RSA-2048 encryption.

CertainID can be used for confidentiality of the transaction as well. Any party knowing the public
key of the user can encrypt a transaction using AES-128 and a random 128-bit symmetric key,
encrypt the symmetric key by using RSA-2048 and 2048-bit public key. Only the user providing the
correct biometric code can unlock the private key which can be used to decrypt the symmetric key
and decrypt the transaction. Due to the computation complexity of the 2048-bit encryption, it is
not practical to use RSA-2048 like algorithms to encrypt arbitrary sized transactions directly.

CertainID | 5

2.2 Biometric Sensor

CertainID is designed to work with any desired biometric sensor (e.g., fingerprints, palm, palm
veins, hand geometry, face, iris, retina, DNA and odour, and behavioural ones such as typing, gaits
and voice) which can accept seed and produce a 128-bit biometric code with high entropy. The
sensor should provide the same biometric code every time the same seed is presented. The sensor
may randomly generate the seed during the initial registration phase and supply it along with the
biometric code. CertainID stores this seed along with the secrets of the user. Later, every time
CertainID presents the seed, the sensor should supply the same biometric code. The sensor should
be generating a different (random) seed each time a user is revoked or newly registered.

This project uses iris sensor/camera supplied by a Kollakorn partner, Infinity Optics. This is a
lightweight camera which can be integrated into laptop or tablet scale computers or provided as a
USB/Bluetooth peripheral device for desktop computers and smartphones. The camera can give
stable iris reading from a reasonable distance, resolving many usability issues surrounding the iris
biometrics-based systems. CertainID communicates with the camera through API calls supplied by
Infinity Optics.

The internal workings of the camera and the algorithm that Infinity Optics uses to extract the
biometric code are intellectual properties of Infinity Optics and kept confidential. For this reason,
we explain our proposed iris code extraction process and CertainID’s requirements on biometric
codes in this section.

2.2.1 Biometric Code Extraction

The aim of iris code extraction is to convert the iris into binary code, which will be used for
cryptographic key binding (Figure 1). Figure 3 illustrates the steps involved for extracting the iris
binary code. The first step is to detect iris boundary. Both inner (pupil) boundary and outer (sclera)
boundary are located through Daugman's method.

The second step is normalisation, as shown in Figure 3 (b). This is because irises of different people
may be captured in various sizes (same eye may also vary due to pupil dilation); therefore,
normalisation is employed to normalize them to be the same size to achieve more accurate
recognition. Afterwards, Daugman rubber sheet model is utilised to unwrap the iris region into a
rectangular block.

The last step is using Gabor filter to encode the iris into binary `1'/`0'. Gabor filter (by Dennis
Gabor), is a linear filter used for texture analysis – identifies specific frequency contents in specific
directions in a localized region.

6 | CertainID

Figure 3 Iris binary code extraction.

2.2.2 Proposed Stable Key Generation Method

The iris binary code (binary string) is utilized for generating a stable biometric code, K. We envision
that this method (or equivalent) is embedded into a biometric sensor to generate a stable code.
Noise in biometric authentication and recognition applications can be tolerated to some extent;
however, not a single error can be tolerated in cryptographic key generation applications. We
apply error correction code (ECC) to reconcile errors.

Figure 4 illustrates the enrolment and regeneration of a stable biometric code, K. During the
enrolment, a key K is randomly selected, potentially using a seed which is randomly generated
during enrolment or supplied by CertainID during regeneration. Then K is encoded. We propose
using concatenation code consists of two codes: BCH(n,k,t) code and repetition code REPET(m).
Supposing we take BCH(255,45,43) code and REPET(9). Then we can split a 135-bit key into three
slices, and encode each 45-bit key through a BCH(255,45,43) block. We get a codeword length of
255-bit. Because we have three 45-bit key, therefore, totally, after BCH encoding, we have 255*3-
bit. Then we apply REPET(9) encoding to get 255*3*9-bit that is 6885-bit. This 6885-bit string is
XORed with the irisref that is also 6885-bit to produce irislock. Only the irislock is stored. Notably, the
K is stored nowhere, it is discarded after the enrolment. The attacker can neither infer the irisref
nor the K based on irislock.

CertainID | 7

Figure 4 Biometric key binding based on iris. ECC is the abbreviation of error correction code.

During key regeneration, the user must be presented in front of the camera and produce irissam. If
the distance between the irissam and irisref is smaller than a threshold, e.g., 20%, the ECC decoding
can always correctly recover the enrolled K. Otherwise, the K restoration will fail.

To help check whether the K has been correctly recovered, during the enrolment, a hash value of
u1 = HASH(K) is generated and also stored in the smart card. During the regeneration, after a trial
of recovering the K, a hash value u2 = HASH(K) can be generated as well. If u2 = u1, then it means
the K has been correctly recovered. There are certain properties worth to be mentioned:

• The K is randomly chosen, before binding, it has no link with any user.

• Due to the above reason, if the user's token is missing, a new token can be assigned to the
user while also binding a different K. So, the K can be flexibly reset.

The BCH(n,k,t) code is able to correct t errors within n bits. The REPET(m) is able to correct up to
(m-1)/2 errors with m is always an odd integer. In general, the BCH code serves as inner correction
and REPET(m) is an outer correction. Table 2 gives some ECC configurations to achieve certain
false rejection rate given the intraFHD of the iris code. IntraFHD is intra Hamming distance
between iris codes produced by the same eye from the same user. It is obvious that a lower
intraFHD is always desired because it facilitates the error correction and requires shorter iris code.

BCH(n,k, t)
code

number of
BCH block

length of K REPET(m) length of
iris

intraFHD

(%)

FRR

(255,45,43) 3 135 7 5355 20 < 10-9
(255,45,43) 3 135 7 5355 30 0.0564
(255,45,43) 3 135 9 6885 30 5.87 x 10-4
(255,71,29) 2 142 5 2550 20 4.03 x 10-4
(255,71,29) 2 142 5 2550 25 0.4472
(255,71,29) 2 142 3 1530 15 8.9 x 10-4
(255,71,29) 2 142 3 1530 17 0.0271

Table 2 False rejection rate (FRR) as a function of varying error correction capabilities (ECC code configurations).

8 | CertainID

2.3 CertainID Cryptosystem

Once a stable biometric code is received from the biometric sensor Figure 5(a): (i) if the user is
enrolling/registering, a public/private key pair is generated, and private key is encrypted using the
biometric code, and (ii) if the user willing to sign a transaction or decrypt an encrypted transaction,
the private key is decrypted temporarily. Any party can access the user's corresponding public key.
It is worth to mention again that the biometric code is stored nowhere, but it is derived on-the-fly
only when the user presents his/her iris.

Figure 5 IRIS based public key infrastructure. (b) and (c) are based on white paper and patents of Kollakorn.

The signature scheme is illustrated in Figure 5(b). Most importantly, because, during set-up, the
private key is bounded to the user, once the transaction is verified, it also means that this
transaction is approved (performed) by the user. Only the user can unlock that private key to sign
the transaction. So, the user cannot deny such a transaction.

The decryption scheme is illustrated in Figure 5(c). Herein, user B wants to transfer a message that
is only allowed to be open by user A. User B firstly obtains user A's public key and encrypted the
message, then sends the encrypted message (ciphertext) to user A. User A can open it only when
he/she presents his/her iris to unlock the private key for decrypting the message.

There are alternative ways to use the biometric code. Rather than using the biometric code for
encrypting the private key, it can be used directly as the private key. CertainID system does not
store the private key and the user provides their biometric reading as needed. It should be noted
that this method requires a biometric code with enough size for a public key cryptographic system
such as RSA and Elliptic Curve as listed in Table 1.

CertainID cryptosystem has two phases: enrolment/registration phase and regeneration phase.
The user must present their biometric information in each phase.

CertainID | 9

Figure 6 Biometric code based crypto-system flow. Only the shaded information is required to be stored. E()/D()
stands for encryption/decryption function, H() stands for hash function.

Enrolment: Given a biometric code (biokey), K, it is utilized to encrypt a secret s. The encrypted s,
Ek(s) and the hash value of s, H(s, id) will be stored after enrolment (Figure 6). The s is randomly
generated from a Cryptographically Secure Pseudo-Random Number Generator (CSPRNG). The
reason of using s rather than directly employing K is that the secret s can be conveniently revoked.

Then the CSPRNG is used to generate several private keys. Here, three private keys, priv1, priv2,
priv3 are taken for examplified demonstration. Different private key can be used for different
purposes, e.g., the priv1 can be for email communication, while the priv2 can be for student exam
checking-in. All these private keys are not stored in plaintext but encrypted by the secret s that
can only be recovered when the biometric code is correctly presented. Based on public key
generation algorithm, public keys pub1, pub2, pub3 are generated and made publicly accessible.

Regeneration: When the biometric information is presented after enrolment, the biometric code
(biokey) K is extracted on-the-fly (Figure 6). It is utilized to decrypt Ek(s). To check whether the s is
correctly decrypted, the decrypted s and input user id is hashed and compared with the enrolled
hash value. If they are same, then the s is confirmed to be correctly recovered by the legitimate
user id presence. The operation proceeds.

According to the specific application, e.g., email, a corresponding private key priv1 is
reconstructed. If the application needs public key pub1 it will be produced as well given the chosen
public key generation algorithm.

The public crypto library or module is planned to be integrated. We have checked the AES-128,
SHA-256 and RSA-2048 are working in python by importing Crypto module.

https://github.com/garrisongys/pythonCrypto/blob/master/CryptoPythonExample.ipynb

10 | CertainID

2.4 CertainID Security Assessment

This section provides a high-level security evaluation for CertainID cryptosystem by focusing on
the cryptographic primitives, communicated information (i.e., in transit between biometric sensor,
CertainID and CertainID database), stored information (i.e., at rest at CertainID database),
computed information (i.e., at the memory), and software vulnerabilities.

Cryptographic Primitives: CertainID uses the best practice cryptographic primitives with NIST
recommended key sizes, e.g., AES with 128-bit keys, SHA256, RSA2048/ECC256, PS256. It is
recommended that any updates on these primitives are monitored and depreciated ones are
replaced with recommended ones by using the best practice crypto libraries.

Communicated Information: Sensitive information is communicated between Biometric Sensor,
CertainID solution and CertainID database. It is assumed that the Biometric Sensor and CertainID
solution are hosted on the same computer. Database can be on the same computer or on a
network server for distributed applications. Biometric Code and Seed are communicated between
Biometric Sensor and CertainID solution. A resident malware may be able to extract image of
memory with perfect timing to leak this information. However, the leakage of this information is
not a risk as the user can revoke this code anytime they like, and it is recommended that users
regularly revoke and enrol a new set of keys using new biometric codes. As the additional layer of
protection, appropriate firewall and intrusion protection combined with disk encryption should be
considered as mandatory for the computer running the CertainID solution. Communication
between CertainID solution and database should always be made over an encrypted channel such
as TLS.

Stored Information: Encrypted sensitive information is stored in an encrypted database. Biometric
code is not stored but used to encrypt a random key, s. Hence, biometric data is safe. Private keys
are encrypted by using s. Once stored, this sensitive information becomes inaccessible till: (i) the
user presents their biometric features, or (ii) underlying cryptographic primitives are broken (e.g.,
AES, RSA, SHA and RSA), which is computationally infeasible. Even when all sensitive information is
compromised, (i) the keys are not useable without the biometric data and (ii) the user can revoke
them all and create a new set (i.e., reset compromised information). However, in the case of
revocation, the application should define proper policies to handle previously signed or encrypted
transactions, e.g., refreshing their signature and encryption.

Computed Information: Sensitive information such as biometric code K, random key s, private
keys priv temporarily (i.e., for a very short time interval in the order of miliseconds) stays in the
memory in cleartext form during CertainID computations. A resident malware may, in theory, be
able to dump memory image at a correct time and access these credentials. This is a typical, but
not practical, security risk which is valid for almost all applications in all operating systems dealing
with sensitive data. Even when all sensitive information is extracted from the memory and
compromised, the compromised CertainID information poses low risk and has no utility for the
attacker as the user can revoke all of the credentials (i.e., biometric code K, random key s, private
keys priv), create a new set of credentials and refresh the existing signatures and encryptions. As
the additional layer of protection, appropriate firewall and intrusion protection combined with
disk encryption should be considered as mandatory for the computer running the CertainID
solution. Major processor vendors (e.g., Intel SGX) have developed CPU memory encryption

CertainID | 11

capabilities to prevent such risks. In such computers, applications stay in an encrypted memory
zone until they are fetched by CPU. Memory encryption and decryption are handled by CPU, and
no operating system processes can access encryption keys. This technology is at its infancy
currently and developing at a fast pace.

Software Vulnerabilities: CertainID and biometric sensor API’s are developed as a proof-of-
concept demonstrator. Although the engineering team have spent an extra effort to follow secure
programming practices, bugs and vulnerabilities are inevitable, e.g., buffer overflow vulnerability
which can be used to leak sensitive information. Although, such leaks pose very low risk and the
leaked information has no utility for the attackers as explained in above paragraphs, it is a good
practice to reduce the number and potential impacts of these vulnerabilities: (i) the applications
developed on CertainID should pass through checks for secure programming principals and
penetration tests regularly, (ii) third-party libraries (e.g., crypto library) and software components
(e.g., database manager) used in the solution should be regularly monitored for their
vulnerabilities, (iii) any patches to these third-party vulnerabilities should be investigated and
applied with no delay.

12 | CertainID

3 CertainID Solution

3.1 System Design

In this section, we give details of the design and architecture of CertainID solution for school
scenario where educational transactions are signed by CertainID.

3.1.1 Requirements Analysis

We collected requirements from both our clients and internal stakeholders to develop the demo
system. All collected requirements are classified into functional requirements and non-functional
requirements as follows.

• Functional requirements

– The demo system shall run on MS Windows and consists of four applications; Server, Signer,
Verifier and Monitor.

– The Server shall provide application management functions (create, read, update, delete).

– The Server shall provide student management functions (create, read, update, delete).
– The Signer shall provide a signing function for any files.

– The Signer shall write signatures and public keys in the same folder of original documents.

– The Verifier shall authenticate documents with given signatures and public keys.
– The Monitor shall display all logs generated since the Monitor started.

• Non-functional requirements

– The system shall store important data securely.

– The system shall be reasonably fast and accurate enough to demo (especially iris recognition).

– The system shall be reliable enough to demo.

3.1.2 Use Case Diagram

As shown in Figure 7, we designed a use case diagram to meet the functional requirements. We
retrieved three main actors, and details of these actors are given below:

• Administrator

– Manages applications (courses) including creating, reading, updating and deleting.

– Enrol students on applications.

– Update students detail information.

– Observe system logs.

• Teacher

– Manages applications (courses) including creating, reading, updating and deleting.

– Verifies documents which are submitted by students.

• Student

CertainID | 13

– Signs on documents to submit to teachers.

– Verifies his/her signed documents before submission.

– Provides his/her iris for enrolling on applications, updating his/her details or signing on
documents.

Figure 7 A use case diagram for the CertainID demo system.

3.1.3 Sequence Diagram

We developed a sequence diagram to show message flows clearly. Figure 8 shows message flows
and relations between actors and objects (CertainID applications). This sequence diagram consists
of three major blocks; enrolment, signing and verification. The followings are detail of message
flows.

1. Enrolment

a. An administrator reviews application list and modifies the list.
b. The Server returns corresponding results to the administrator.

c. A student comes to the Admin Office and request an enrolment to the administrator.

d. The administrator fills up an enrolment form with the student’s detail information.
e. The administrator asks the student to scan his/her iris.

f. The student scans his/her iris with an iris scanner.

g. The Server returns an iris scanning result to the student.

h. The student informs the administrator that iris scanning has been completed.

i. The Server returns an enrolment result to the administrator.

2. Signing

a. The student searches his/her details from the Signer.

b. The Signer displays the student’s detail information and applications enrolled.

c. The student drags and drops a report file on the drop area in the Signer and selects an
application he/she wants to submit for.

14 | CertainID

d. The Signer asks the student to scan his/her iris.

e. The student scans his/her iris with an iris scanner.

f. The Signer returns an iris scanning result to the student.

g. The Singer signs on the report file with a secret decrypted by the iris code. As a result, the
Signer generates a signature file and a public key file in the same folder which the report
file is in.

3. Verify the report

a. The student submits the signed report with the signature file and the public key file.

b. A teacher executes the Verifier to verify the report before scoring.

c. The teacher drags and drops the submitted report on the drop area in the Verifier.

d. The Verifier reads the signature file and the public key file.

e. The Verifier validates the public key with DB.

f. The Verifier verifies the signature and return a verification result.

g. Once the signature is authentic, the teacher marks score.

h. The teacher notifies the score to the student.

Figure 8 A sequence diagram for the CertainID demo system.

3.1.4 Class Diagram

Figure 9 shows a high-level class diagram for the CertainID demo system. This diagram shows only
relations between classes. Figure 10 and Figure 11 show more detail information of classes which
including members and methods.

CertainID | 15

Figure 9 A high-level class diagram for the CertainID demo system.

In Figure 9, there are four main classes which represent applications:

• Server: This class represents the Server application and uses ServerWinodw as a main UI.

• Signer: This class represents the Signer application and uses SignerWindow as a main UI.

• Verifier: This class represents the Verifier application and uses VerifierWindow as a main UI.

• Monitor: This class represents the Monitor application and uses MonitorWindow as a main UI.

‘algorithms’ Package

Figure 10 shows a class diagram for ‘algorithms’ Package. This package is a group of algorithm-
related classes, and details of these classes are given below:

16 | CertainID

Figure 10 A class diagram for 'algorithms' package.

• CryptoTools: This class provides static crypto methods.

– calculate_hash(): Calculates hash value of secret and student ID.

– decode_aes128(): Decodes the given cipher text with AES128 algorithm.

– encode_aes128(): Encodes the given message with AES128 algorithm.

– generate_encrypted_key_pairs(): Generates given number of key pairs in which private keys
will be encrypted with the secret.

– generate_key_pair(): Generates a RSA key pair.

– generate_secret(): Generates a secret code of given length.

– sign_message(): Signs on given message and verify the signature with given public key.

– verify_message(): Verifies signature with given public key.

• DBHandler: This class handles all database input/output operations.

– cnf_name: DB configuration file’s name.

– test_connection(): Tests the DB configurations.

– append_application(): Adds applications to the DB. Application ID will be assigned
automatically.

– get_application_list(): Returns all application list in the application table.

– remove_applications(): Deletes applications in the DB.

– update_application(): Updates an application's name which matches with given application ID.

– get_students(): Returns all students where student ID contains the query string.

CertainID | 17

– get_student_id_set(): Returns a set of all students' ID.

– get_students_application_id_list(): Returns a student's registered application list.

– save_student(): Saves a student's information into the student table.

– update_student(): Updates a student's information in the student table.

– remove_students(): Removes students which matched with student id.
– save_key_pairs(): Saves key pairs into the key table.

– remove_key_pairs(): Removes key pairs which matched with all combinations of student ID
and application ID.

– get_key_pairs(): Returns a student's all key pairs.
– get_key_pair(): Returns a key pair which matches with student ID and application ID.

– is_valid_public_key(): Checks whether the key is in the DB or not.

– get_last_log_id(): Returns last log ID.

– get_logs(): Returns logs since given seconds ago.

– write_log(): Writes message into the log table.

– write_logs(): Writes message into the log table.

• Application: This class represents an application.

– application_id: Application ID.
– application_name: Application name.

• Student: This class represents a student.

– student_id: Student ID.

– first_name: Student’s first name.

– last_name: Student’s last name.

– email: Student’s email address.

– public_biometric: Biometric of iris code.
– encrypted_secret: Encrypted personal secret code.

– h: Hash value of secret and student ID.

– key: An iris code.

– secret: For storing decrypted personal secret code.

• KeyPair: This class represent a pair of public key and private key.

– private_key: A private key of an application.

– public_key: A public key of an application.

• Log: This class represent a log information.

– log_id: Log ID.
– message: Log message.

– timestamp: Timestamp of log.

18 | CertainID

‘ui’ Package

Figure 11 shows a class diagram for ‘ui’ Package. This package is a group of user interface classes,
and details of these classes are given below:

Figure 11 A class diagram for ‘ui’ package.

• ServerWindow: Main window UI for Server

– use_dummy: Boolean for whether use a dummy DLL or not.

– enroll(): Shows an instance of StudentDialog with ‘enroll’ mode.

– manage_applications(): Shows an instance of ApplicationDialog.

– update_detail(): Shows an instance of StudentDialog with update mode.

– toggle_dll(): Toggles dummy DLL mode.
– closeEvent(): Handles ‘closeEvent’.

• ApplicationDialog: Dialog for application management.

– applications: List of Application objects.

– handle_add_application(): Adds an application to list and DB.

– handle_del_applications(): Deletes selected applications from list and DB.
– handle_application_name_changed(): Update an application’s name.

– handle_name_editor_changed(): Handles UI components when ‘edit_name’ field is changed.

– handle_selection_changed(): Handles UI components when applications are selected.

– update_application_list(): Refreshes application list.

• StudentDialog: Dialog for editing student information.

CertainID | 19

– student: Current student.

– student_id_set: All student ID list.

– applications: All application list.

– handle_append_application(): Handles application append actions.

– handle_delete_application(): Handles application removal actions.
– handle_field_changed(): Handles UI components if there’re some fields changed.

– handle_get_iris(): Starts to scan iris.

– handle_save_student(): Saves current student information to DB.

– handle_search_id(): Shows an instance of StudentSearchDialog.

– handle_handle_selection_changed(): Handles selection changes in the application list.

– update_application_list(): Refreshes the application list.

• StudentSearchDialog: Dialog for searching students from DB.

– students: Student list which matched with the query string.

– selected_student: Currently selected student.

– get_selected_student(): Returns currently selected student.
– handle_delete(): Handles student removal actions.

– handle_field_changed(): Handles UI components if there’re some fields changed.

– handle_select(): Handles ‘Select’ button clicks.
– handle_selection_changed(): Handles selection changes in the student list.

– update_student_list(): Refreshes the student list.

• SignerWindow: Main window UI for Signer.

– use_dummy: Boolean for whether use a dummy DLL or not.

– drop_area: An instance of DropArea with signing mode.
– handle_choose_student(): Shows an instance of StudentSearchDialog.

– handle_get_iris(): Starts to scan iris.

– handle_sign(): Handles ‘Sign’ button click.
– toggle_dll(): Toggles dummy DLL mode.

– closeEvent(): Handles ‘closeEvent’.

• DropArea: UI component to support drag and drop.

– filename: Dropped filename.
– hash: SHA256 of dropped file.

– verify: DropArea mode. Either signing or verifying.

– clear(): Clear all internal values.
– dragEnterEvent(): Handles ‘dragEnterEvent’.

– dropEvent(): Handles ‘dropEvent’.

• VerifierWindow: Main window UI for Verifier.

– drop_area: An instance of DropArea with verifying mode.

– closeEvent(): Handles ‘closeEvent’.

20 | CertainID

• MonitorWindow: Main window UI for Monitor.

– scheduler: A timer for pulling logs periodically.
– update_logs(): Pulls logs and displays the logs.

– closeEvent(): Handles ‘closeEvent’

3.1.5 Database

We compared NoSQL with RDBMS to find out which database is more suitable for the CertainID
demo system. Table 3 shows a summary of comparison between NoSQL and RDBMS. Nowadays
NoSQL is very popular, and it supports non-structural data very well and more suitable for rapidly
growing data. On the other hand, RDMBS is more suitable for structed data and traditional
transaction systems. By considering the requirements carefully, we decided to use RDBMS as the
CertainID is a traditional transaction system and the systems handles only small amount of data.

Table 3 Comparison between NoSQL and RDBMS.

CATEGORY NOSQL RDBMS

Use case Real-time analytics, Content management, IoT,
Mobile Apps

Legacy applications or applications that require
multi-row transactions (i.e. accounting
systems)

Data structure No schema definition required Structured data with clear schema

Risk Less risk of attack due to design Risk of SQL injection attacks

Analysis A grate choice if you have unstructured and/or
structured data with the potential for rapid
growth

A great choice if you have structured data and
need a traditional relational database

We designed a database scheme for the CertainID demo system as shown in Figure 12. The
CertainID demo system only stores normal information and encrypted important information. Iris
code is never stored in the database.

Figure 12 Database scheme for the CertainID.

Student

student_id (VARCHAR, PK)

first_name (VARCHAR)

last_name (VARCHAR)

email (VARCHAR)

public_biometric (VARCHAR)

encrypted_secret (BLOB)

hash (VARCHAR)

Application

application_id (INT, PK)

application_name (VARCHAR)

Key

student_id (VARCHAR, PK, FK)

application_id (INT, PK, FK)

encrypted_private_key (BLOB)

public_key (BLOB)

1

1

n

1

Log

log_id (INT, PK)

message (VARCHAR)

timestamp (datetime)

CertainID | 21

The followings are detail information database tables.

• Student: Represents a student.

– student_id: Student ID. Primary key of this table.
– first_name: Student’s first name.

– last_name: Student’s last name.

– email: Student’s email address.

– public_biometric: Biometric of iris code.

– encrypted_secret: Student’s secret which encrypted by an iris code.

– Hash: Hash value of student ID and student’s secret.

• Application: Represents an application.

– application_id: Application ID. Primary key of this table.

– application_name: Application’s name.

• Key: Represents a pair of private key and public key.

– student_id: Student ID. A part of primary key. Foreign key for the Student table.

– application_id: Application ID. A part of primary key. Foreign key for the Application table.
– encrypted_private_key: Individual private key for an application which encrypted by a

student’s secret.

– public_key: Individual public key for an application.

• Log: Represents a log record.

– log_id: Log ID. Primary key of this table.

– message: Log message.

– timestamp: Timestamp for this record.

3.2 Implementation

3.2.1 Development Platform

The CertainID uses many crypto functions; AES128, SHA256, RSA2048 and PS256. To find out
which crypto library is most suitable for our case, we compared some popular crypto libraries
written in different programming languages as

Table 4. All of them supports all required crypto functions, and according to the licenses there’s
almost no restrictions to use1.

1 From January 2019, Oracle started to charge license fees on some Java products. To avoid license fees, users need to switch to OpenJDK.

22 | CertainID

Table 4 Comparison of crypto libraries.

CATEGO
RY

C++ JAVA PYTHON

Library Crypto++ Library 8.0 java.security PyCryptodome 3.7.2

AES128 Yes Yes Yes

SHA256 Yes Yes Yes

RSA204
8

Yes Yes Yes

PS256 Yes (RSASS) Yes (JWSAlgorithm) Yes (PKCS1_PSS)

License <www.cryptopp.com/License.txt> <www.java.com/en/downloa
d/faq/distribution.xml>

<pycryptodome.readthedocs.io/
en/latest/src/license.html>

The CertainID should run on MS Windows environments. To meet this requirement, we listed up
some candidates as shown in Table 5. As C++, Java and Python can meet all functional
requirements and non-functional requirements, any of them would be a good development
platform. We gave higher priorities on productivity and debugging, and finally we chose Python as
a development platform to shorten development time.

Table 5 Comparison of development platforms.

CATEGORY C++ JAVA PYTHON

IDE Visual Studio Eclipse PyCharm, Eclipse

GUI MFC, Qt JavaFX PyQt

Executable file Yes Yes (JSmooth, exe4j, Launch4j) Yes (py2exe, pyinstaller)

Performance Very fast Fast enough Slow

Productivity Medium Good Excellent

Debugging/
Maintenance

Medium (Smart pointer) Easy (Garbage collection) Easy (Garbage collection)

3.2.2 APIs for InfinityOptics Iris Scanner

The CertainID works with an iris scanner which developed by InfinityOptics. To obtain iris codes properly
from the InfinityOptics iris scanner, we had to define APIs between the CertainID and InfinityOptics SDK
which is written C. Requirements for APIs are given below:

• Registration API: Returns a 128-bit iris code, a 32-bit public biometric and an error code

• Authentication API: Caller provides a 32-bit public biometric. Returns a 128-bit iris code with an
error code

• APIs can be in any form (DLL, EXE, and so on) if Python can call

• Platform: Windows 10 64bit

CertainID | 23

API Definitions

Figure 13 shows agreed APIs between the CertainID and InfinityOptics SDK. There are two APIs;
one for registration and the other one for authentication.

#ifdef DLLTEST_EXPORTS

#define EXPORT extern "C" __declspec(dllexport)

#else

#define EXPORT extern "C" __declspec(dllimport)

#endif

// return: 0 – No error, Other values – Error code

EXPORT int _stdcall infinity_lens_plus_biometric_register (char *pCode, char *pMask);

EXPORT int _stdcall infinity_lens_plus_biometric_authenticate (const char * pMask, char * pCode);

Figure 13 APIs for InfinityOptics.

• Registration: infinity_lens_plus_biometric_register()

– Parameters
§ pCode: A char array for iris code. It must be allocated by caller, and size of array must

be bigger than 32 bytes.

§ pMask: A char array for biometric. It must be allocated by caller, and size of array must
be bigger than 9 bytes.

– Returns

§ Error code: Returns 0 if there’s no error. Otherwise returns an error code defined.

• Authentication: infinity_lens_plus_biometric_authenticate()

– Parameters

§ pCode: A char array for iris code. It must be allocated by caller, and size of array must
be bigger than 32 bytes.

§ pMask: A constant char array for biometric. Caller must provide a valid biometric to get
a proper iris code.

– Returns

§ Error code: Returns 0 if there’s no error. Otherwise returns an error code defined.

API Usages in Python

Figure 14 shows how to use the APIs in Python. This example does not handle any exception or
error codes of APIs.

24 | CertainID

import ctypes as c

dll = c.CDLL("InfinityLensPlusCore.dll")

registration

reg_func = dll['infinity_lens_plus_biometric_register']

reg_func.restype = c.c_int

reg_func.argtypes = (c.c_char_p, c.c_char_p)

biometric = c.create_string_buffer(9)

iris_code = c.create_string_buffer(33)

reg_result = reg_func(new_iris_code, biometric)

authentication

auth_func = dll['infinity_lens_plus_biometric_authenticate']

auth_func.restype = c.c_int

auth_func.argtypes = (c.c_char_p, c.c_char_p)

new_iris_code = c.create_string_buffer(33)

copied_biometric = biometric

auth_result = auth_func(new_iris_code, copied_biomeric)

Figure 14 A usage example of the APIs in Python.

3.3 Installation

3.3.1 Runtime Environment

The CertainID runs on MS Windows 10 64-bit edition, and the followings are more detail about the
running environment.

• OS: MS Windows 10 64-bit edition.

– Does not support 32-bit edition.

• CPU/RAM: No specific requirements.

– Just enough if a PC can run on MS Windows 10 64-bit.

– The faster, the better to boot iris recognition speed.

• DBMS: MySQL Community Server 8.0 64-bit edition.

– The latest version is recommended.

CertainID | 25

3.3.2 Install MySQL Server

Before install the CertainID, setup a MySQL server first. We recommend installing MySQL
Community Server 8.0 or higher version as it’s more secure. If you have a MySQL server, you can
skip this part. Otherwise, please follow the instruction given:

1. Access <https://dev.mysql.com/downloads/windows/installer/8.0.html>, and download the
latest version of MySQL

Figure 15 MySQL Community Server download page.

2. Execute the downloaded file. For minimal install, select ‘Custom’ to select the MySQL product
manually. Then, as shown in Figure 17, select MySQL Server 8.0 – X64 and MySQL Workbench
8.0 – X64. Or simply select either ‘Developer Default’ or ‘Full’ as shown in Figure 16. Please note
that ‘Developer Default’ and ‘Full’ install may require to install Python 3.7 manually.

26 | CertainID

Figure 16 MySQL setup - Choosing a Setup Type.

Figure 17 MySQL setup - Select Product and Features.

3. To setup MySQL, default values are enough. In the middle of setup, enter root password twice.
We also recommend adding a user for accessing DB not as a root. To add a user, click the ‘Add
User’ button, and fill up the fields.

CertainID | 27

Figure 18 MySQL setup - Accounts and Roles.

4. After setup all values, the setup program will apply configuration.

Figure 19 MySQL setup - Apply Configuration.

3.3.3 Setup a DB Schema

MySQL provides a GUI tool, MySQL Workbench, to manage MySQL server easily. In this
instruction, we use MySQL Workbench.

5. Execute MySQL Workbench, and access to the MySQL Server. If you use other MySQL servers,
you can setup a new connection by clicking the circled plus icon as shown in Figure 20.

28 | CertainID

Figure 20 MySQL Workbench – Welcome screen.

6. To create a DB Schema, click ‘Create a new schema’ button (red circle in Figure 21). Then name
‘certainid’.

Figure 21 Create a Schema.

7. To assign a user to the schema, click the ‘User and Privileges’ from the Navigator (please refer
Figure 22). Then select a user wish to assign to the schema, select ‘Schema Privileges’ and click
‘Add Entry’ button.

CertainID | 29

Figure 22 Edit Privileges

8. Select ‘certainid’ to assign rights.

Figure 23 Select schema

9. Click ‘Select All’ button to assign all rights to the user. If necessary, add or remove rights. Then
click ‘Apply’ to apply.

30 | CertainID

Figure 24 Append rights to the schema

10. To use ‘certainid’ schema, double click the ‘certainid’. Then ‘certainid’ schema will be in bold
type (please refer Figure 25). Open ‘create_tables.sql’ file (distributed with the CertainID
package) with the second tool button in the toolbar. Execute the loaded SQL statements with
the lightening button in the sub-window toolbar.

CertainID | 31

Figure 25 Create tables.

3.3.4 Install CertainID

11. To install the CertainID, execute “CertainID.exe”. Figure 26 shows the first page, MySQL
Connection Information, of the CertainID installer. All fields are filled with default values. If you
used different values for setting up the DB, fill the values you used.

Figure 26 Setup CertainID - MySQL Connection Information.

12. Select destination location to install the CertainID. By default, the CertainID will be installed in
‘C:\Program Files\CertainID’.

32 | CertainID

Figure 27 Setup CertainID - Destination Location.

13. Choose whether create desktop shortcuts or not.

Figure 28 Setup CertainID - Create desktop shortcuts.

14. Review your selections. Click ‘Back’ if you want to change any settings. Or click ‘Install’ to
install the CertainID.

CertainID | 33

Figure 29 Setup CertainID - Review configurations.

15. Figure 30 shows progress of installation.

Figure 30 Setup CertainID – Installing

16. Once installation is finished, click ‘Finish’ to exit the setup program.

34 | CertainID

Figure 31 Setup CertainID – Finished.

17. During the installation if you chose to create desktop shortcuts, four desktop shortcuts will be
created as show in Figure 32.

Figure 32 CertainID shortcuts.

3.4 Running

Figure 33 IRIS Camera installed.

Before running, attach an iris camera which provided by InfinityOptics to your PC. MS Windows
will recognise the iris camera automatically. Figure 33 shows the installed iris camera. Once
configuration of DB is done, no additional actions are required. Simply copy the CertainID package
to an appropriate location and execute the EXE files.

CertainID | 35

3.4.1 Monitor

To run the Monitor, execute ‘monitor.exe’. The Monitor shows log messages since the Monitor started.

Figure 34 Main window of the Monitor.

3.4.2 Server

To run the Server, execute ‘server.exe’. The Server supports many features; managing
applications, enrolling on applications and updating students’ details. Administrators and teachers
are main users of this program. The server supports a dummy DLL for a demo without camera
module.

Figure 35 Main window of the Server.

Logs

Manage
applications

Enroll on courses Update details Turn on/off
camera

Logs

36 | CertainID

3.4.3 Signer

To run the Signer, execute ‘signer.exe’. Through the Signer, users can sign on any documents. By
dropping a document file on the drop area (please refer Figure 36), a user can sign on the
document. The Signer will create a corresponding signature file and a public key file into the same
folder which the document file is located. The Signer also supports a dummy DLL for a demo
without camera module.

Figure 36 Main window of the Signer.

3.4.4 Verifier

To run the Verifier, execute ‘verifier.exe’. The Verifier verifies signed documents. By dropping a
signed document file on the drop area (please refer Figure 37), the Verifier will check whether the
document is authentic or not. The Verifier automatically will look for signature files and public key
files from the same folder which document files are located.

Search student

Scan iris

Turn on/off
camera

File drop area

Sing on a file

Logs

CertainID | 37

Figure 37 Main window of the Verifier.

3.5 Demonstration

We prepared a demo scenario to show how the CertainID works as the followings:

18. Run Monitor

a. An administrator runs the Monitor to observe the CertainID.

19. Manage applications

a. An administrator runs the Server.

b. The administrator reviews application list and modifies the list if necessary.

Figure 38 Manage Applications Dialog.

20. Enrol on a course

a. A student comes to the Admin Office for enrolling on a course.

b. An administrator opens the Server and fills the enrolment form up.

File drop area

Logs

Authentication
result

38 | CertainID

Figure 39 Enrolment form.

c. The student scans his/her iris. Figure 40 shows an iris camera with a mirror to assist users.
For scanning iris properly, locate your face in the centre of the mirror, keep a distance from
the mirror about 35cm and look at the camera which located in the middle.

Figure 40 Iris camera with a mirror to assist users.

d. The administrator saves the form.

21. Submit a report

a. The student writes a report (any type of electronic assessment such as homework, project,
exam, etc.).

b. The student/teacher opens the Signer and drop the report on the drop area in the Signer.

c. The student scans his/her iris.

CertainID | 39

Figure 41 Sign on a document.

d. Submitted report can also be signed by teacher to prevent deny by both parties.
e. The student keeps a copy of report, own signature, own public key, teacher’s signature and

teacher’s public key.

f. The teacher keeps a copy of report, own signature, own public key, student’s signature and
student’s public key.

22. Verify the report

a. Teacher verifies the report before scoring, e.g. if any part is missing or if it has been
tempered with in the system.

b. A teacher opens the Verifier and drop a submitted report.

Figure 42 Verify a signed document

23. Conflict resolution

a. The student claims that the submitted report was modified or lost, or

b. The teacher claims that the student has not submitted a report or part of it.

c. Both parties present and verify the reports and signatures they must resolve the conflict.

40 | CertainID

4 Conclusion

This project delivers the CertainID solution consisting of a cryptosystem, a software server
component for application enrolment, a software signer module for user registration and
transaction signing, a software verifier module to check signatures, a software monitor module to
demonstrate the interaction between CertainID components, third-party biometric sensor
hardware and its APIs.

The CertainID project fills a significant gap by providing a safe method for biometrics-based
security solutions. CertainID uses biometric features through a one-way mapping to create a
revokable biometric code and uses the biometric code to encrypt a set of randomly generated
private/secret keys. Users present their biometric features to unlock a private/secret keys for
signing (or decrypting) a transaction.

CertainID ensures that individuals' mass biometric data is not lost/compromised, and no sensitive
information associated with individuals can be hacked off the device if the device storing CertainID
data is lost or compromised. Accordingly, CertainID helps remove the security key management
burden and associated risks both from individuals and organizations.

4.1 Potential Applications

This report illustrates one application of CertainID for educational institutes. CertainID can solve
many trust issues in a most useful manner in classrooms relating to scenarios such as
identification, authentication, prevention of cheating, and ensuring non-repudiation. The solution
applies to all domains and applications involving many users. It solves key management and
authentication problems and removes complications resulting from storing many sensitive user
credentials. Transactions used by CertainID can be any sequence of bytes such as text or binary
files of arbitrary sizes, communication messages, emails, PDF/Word/PS forms and electronic
tokens/tickets. From this perspective, CertainID has vast potential for applications in finance,
government services, energy, transportation, health, manufacturing and service domain as key
and identity management platform. The lightweight characteristic of the solution makes it suitable
for mobile to cloud computing systems.

4.2 Future Work

Kollakorn and Data61 have developed the CertainID demonstrator using a low-cost camera
capable of reading iris from a comfortable distance (e.g., 40 cm). Future work would extend the
existing CertainID demonstrator to a full-fledged cloud service. This would transform CertainID to
a biometric ID provider for Kollakorn clients. In this case, the users would use their devices such as
a USB/Bluetooth sensors, laptop, tablet or smartphone to read their biometric information, unlock
their security keys stored by CertainID service, and use these keys in any security application they
wish, e.g., signing a PDF form or a bank transaction, encrypting an email, or signing in a web
service.

CertainID | 41

 Abbreviations and Glossary

AES - Advanced Encryption Standard

API - Application Programming Interface, which is a is a set of subroutine definitions,
communication protocols, and tools for building software.

BCH - Bose–Chaudhuri–Hocquenghem codes form a class of cyclic error-correcting codes that are
constructed using polynomials over a finite field.

CPU - Central Processing Unit

DLL - Dynamic-Link Library, which is a Microsoft implementation of shared library concept.

ECC - Elliptic Curve Cryptosystem

ID - Identity

NIST - The U.S. National Institute of Standards and Technology

RSA - Rivest–Shamir–Adleman which is one of the first public-key cryptosystems and is widely used
for secure data transmission

SHA - Secure Hash Algorithm

USB - Universal Serial Bus

CONTACT US
t 1300 363 400
 +61 3 9545 2176
e csiroenquiries@csiro.au
w www.data61.csiro.au

WE DO THE EXTRAORDINARY EVERY DAY
We innovate for tomorrow and help
improve today – for our customers,
all Australians and the world.
WE IMAGINE
WE COLLABORATE
WE INNOVATE

 FOR FURTHER INFORMATION
Seyit Camtepe
Principal Research Scientist
t +61 2 9372 4325
e seyit.camtepe@data61.csiro.au
w www.data61.csiro.au

Surya Nepal
Senior Principal Research Scientist
t +61 2 9372 4256
e surya.nepal@data61.csiro.au
w www.data61.csiro.au
ww.data61.csiro.au

